Acta Crystallographica Section B
Structural
Science
ISSN 0108-7681

Bjørn Dalhus* and Carl Henrik Görbitz

Department of Chemistry, University of Oslo, PO Box 1033, Blindern, N-0315 Oslo, Norway

Correspondence e-mail: bjornda@kjemi.uio.no

[^0] Printed in Great Britain - all rights reserved

Non-centrosymmetric racemates: space-group frequencies and conformational similarities between crystallographically independent molecules

DL-Allylglycine (DL-2-amino-4-pentenoic acid, $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{NO}_{2}$) yields crystals with $P c a 2_{1}$ symmetry and two crystallographically independent yet pseudo-inversion-related enantiomers. The distribution among the common space groups of other crystalline racemates with more than one molecule in the asymmetric unit has been established. The conformational similarities between crystallographically independent enantiomers in 114 non-centrosymmetric racemates were quantified using the r.m.s. deviation for a molecular superposition. The analysis shows that in the majority of crystals the conformations of the crystallographically independent molecules are very similar with mean r.m.s. deviation $=0.190 \AA$. In almost 80% of the structures the mean r.m.s. deviations is in the interval $0-0.2 \AA$. It is estimated that racemates constitute 23% of the centrosymmetric organic structures in the Cambridge Structural Database.

1. Introduction

The structure of DL-allylglycine (DL-2-amino-4-pentenoic acid) was determined as part of an ongoing programme to provide accurate H -atom positions in crystal structures of hydrophobic amino acids (Dalhus \& Görbitz, 1999, and references therein). Intuitively, we had expected this racemate to crystallize in a space group with a center of symmetry, but surprisingly the space group proved to be non-centrosymmetric $\left(\mathrm{Pca2}_{1}\right)$. To our knowledge, no systematic investigation dealing with this phenomenon has been presented previously. We thus decided to retrieve the relevant data from the Cambridge Structural Database (CSD; Allen \& Kennard, 1993) to establish the frequency with which racemates crystallize in non-centrosymmetric space groups, and also the degree of similarity between the two enantiomeric molecules in the asymmetric unit.

2. Experimental

Racemic DL-allylglycine was obtained from Sigma, and an aqueous solution was mixed with tetramethoxysilane in the ratio $10: 1$ (volume/volume) and left for some minutes to polymerize. Relatively large crystals appeared as ethanol diffused into the gel at room temperature.

The structure was solved and refined with SHELXTL (Sheldrick, 1994). All non-H atoms were refined anisotropically. Amino H atoms were refined isotropically, while other H atoms were placed geometrically and refined with constraints to keep all $\mathrm{C}-\mathrm{H}$ distances and all $\mathrm{C}-\mathrm{C}-\mathrm{H}$ angles on one C atom the same. Further, isotropic displacement parameters for the H atoms were fixed at $1.2 U_{\text {eq }}$ of the bonded

Table 1
Experimental details.

	DL-Allylglycine
Crystal data	
Chemical formula	$\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{NO}_{2}$
Chemical formula weight	115.13
Cell setting	Orthorhombic
Space group	Pca2 ${ }_{1}$
$a($ A)	9.8588 (5)
b (\AA)	4.8125 (3)
$c(\mathrm{~A})$	25.0546 (13)
$V\left(\AA^{3}\right)$	1188.73 (11)
Z	8
$D_{x}\left(\mathrm{Mg} \mathrm{m}^{-3}\right)$	1.287
Radiation type	Mo $K \alpha$
Wavelength (A)	0.71073
No. of reflections for cell parameters	5506
θ range (${ }^{\circ}$)	2.44-39.66
$\mu\left(\mathrm{mm}^{-1}\right)$	0.099
Temperature (K)	150 (2)
Crystal form	Plate
Crystal size (mm)	$0.40 \times 0.40 \times 0.10$
Crystal color	Colorless
Data collection	
Diffractometer	Siemens Smart CCD
Data collection method	ω scans
ω-scan width (${ }^{\circ}$)	0.6
No. of sets of exposures	6
Exposure time per frame (s)	60
Crystal-to-detector distance (cm)	4.98
Absorption correction	Multi-scan empirical (SADABS; Sheldrick, 1996)
$T_{\text {min }}$	0.961
$T_{\text {max }}$	0.990
No. of measured reflections	26563
No. of independent reflections	7312
No. of observed reflections	6251
Criterion for observed reflections	$F>4 \sigma(F)$
$R_{\text {int }}$	0.0369
$\theta_{\text {max }}\left({ }^{\circ}\right)$	40.10
Range of h, k, l	$-17 \rightarrow h \rightarrow 17$
	$-8 \rightarrow k \rightarrow 8$
	$-45 \rightarrow l \rightarrow 43$
Refinement	
Refinement on	F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]$	0.0440
$w R\left(F^{2}\right)$	0.1107
S	1.054
No. of reflections used in refinement	7312
No. of parameters used	177
H -atom treatment	Mixed
Weighting scheme	$\begin{gathered} w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.07 P)^{2}\right], \text { where } \\ \quad P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \end{gathered}$
$(\Delta / \sigma)_{\text {max }}$	0.000
$\Delta \rho_{\text {max }}\left(\mathrm{e} \AA^{-3}\right)$	0.457
$\Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	-0.286
Extinction method	None
Source of atomic scattering factors	International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4)
Computer programs	
Data collection	SMART (Siemens, 1995)
Cell refinement	SAINT (Siemens, 1995)
Data reduction	SAINT (Siemens, 1995)
Structure solution	SHELXTL (Sheldrick, 1994)
Structure refinement	SHELXTL (Sheldrick, 1994)

C atoms. The absolute structure cannot be unambiguously determined from the present refinement. However, a Flack (1983) parameter of 0.1 (5) suggests that the chosen polarity is correct, hence the Friedel pairs were not merged. Full experimental details are given in Table 1 and fractional coordinates in Table 2.

In this study only CSD (Allen \& Kennard, 1993, October 1998 release) database entries including atomic coordinates have been accepted and the 'only organics' screen was also enabled where appropriate. Throughout the years various compounds have been subject to several X-ray structure investigations, reflected by the occurrence of more than one entry in the CSD, all within the same refcode family. By using an in-house program that keeps only one structure for each such family, care has been taken to eliminate duplicate structures in the crystallographic material.

3. Molecular and crystal structure of dt-allylglycine

The Bravais lattice is primitive orthorhombic with systematic absences corresponding to either Pca_{1} (non-centrosymmetric) or Pcam (centrosymmetric). It was not possible to conclude on the presence of a crystallographic inversion center from statistics for the normalized structure factors $\left(\left|E^{2}-1\right|=0.831\right.$ compared with the theoretical values 0.968 and 0.736 for centrosymmetric and non-centrosymmetric space groups, respectively). Attempts to solve the structure in the centrosymmetric space group Pcam were uniformly unsuccessful, but the structure was solved immediately in $P c a 2_{1}$ and refined to a final $R=0.044$. There are two enantiomers (A and B, Fig. 1) in the asymmetric unit, related by a pseudo-inversion center located at $x=0.3988, y=0.2516, z=$ 0.1458. Refinement in the centrosymmetric space group Pcam (one molecule in the asymmetric unit) was carried out after

Figure 1
Molecular diagram with atomic numbering of DL-allylglycine. Displacement ellipsoids are drawn at the 50% probability level. H atoms are arbitrarily scaled.

Table 2
Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$.

$U_{\text {eq }}=(1 / 3) \Sigma_{i} \Sigma_{j} U^{i j} a^{i} a^{j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
O1A	0.09520 (6)	0.56822 (12)	0.18784 (3)	0.01745 (10)
O2A	-0.06823 (6)	0.31216 (14)	0.22600 (3)	0.02104 (12)
N1 A	0.28759 (7)	0.18606 (15)	0.20740 (3)	0.01549 (11)
C1A	0.05368 (7)	0.36671 (15)	0.21479 (3)	0.01362 (11)
C2A	0.16103 (7)	0.17524 (15)	0.23957 (3)	0.01352 (11)
C3A	0.18821 (8)	0.27327 (18)	0.29687 (3)	0.01810 (13)
C4A	0.28927 (12)	0.1015 (2)	0.32668 (4)	0.02662 (18)
C5A	0.40348 (12)	0.2001 (3)	0.34706 (5)	0.0387 (3)
O1B	0.70017 (6)	-0.07034 (13)	0.10500 (3)	0.01816 (11)
O2B	0.86465 (6)	0.18270 (14)	0.06682 (3)	0.02159 (13)
N1B	0.50974 (6)	0.31731 (15)	0.08508 (3)	0.01513 (11)
C1B	0.74251 (7)	0.13005 (15)	0.07796 (3)	0.01383 (11)
C2B	0.63630 (7)	0.32251 (15)	0.05285 (3)	0.01361 (11)
C3B	0.60759 (9)	0.22035 (19)	-0.00413 (3)	0.01938 (14)
C4B	0.51141 (12)	0.3988 (2)	-0.03492 (4)	0.02719 (18)
C5B	0.39443 (13)	0.3126 (4)	-0.05470 (5)	0.0405 (3)

the proper origin shift. The refinement gave a final R factor >0.50. Furthermore, the molecular packing arrangement shows that the pseudo-inversion center is only a local pseudosymmetry element (Fig. 2). We conclude that the space group is unambigously $\mathrm{Pca} 2_{1}$.

Corresponding bond lengths and angles are very similar in the two molecules. There are some small, but still significant differences between torsion angles (Table 3), the largest being 2.3° for $\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4\left(\chi^{1}\right)$ after inversion of B (or A).

Molecules A and B are stacked in consecutive layers parallel to the $x y$ plane, and the crystal structure contains distinct hydrophilic and hydrophobic layers, Fig. 2. Our

Figure 2
Packing diagram viewed down the b axis. Pseudo-inversion centers within the unit cell are marked with open circles. The pseudo-inversion center at $x=0.3988, y=0.2516, z=0.1458$ is labelled P. Molecules C and C^{\prime} are related by the pseudo-inversion center at P^{\prime}, but molecules A and D have the same chirality. Hence, the pseudo-inversion symmetry is local and confined to separate molecular layers.
investigations (Dalhus \& Görbitz, 1999) have revealed three major classes of molecular packing arrangements, each with a distinct hydrogen-bond pattern. The present racemate belongs to class I, as do the racemates of other unbranched amino acids such as DL-norleucine and DL-methionine (Dalhus \& Görbitz, 2000). In this class two of the three amino H atoms in each independent molecule ($\mathrm{H} 1 A / \mathrm{H} 2 A$ in $A, \mathrm{H} 1 B / \mathrm{H} 2 B$ in B) form chains of hydrogen-bonded glide-plane-related enantiomers along a, Fig. 2. H3 A and $\mathrm{H} 3 B$, on the other hand, form hydrogen bonds across the hydrophilic layer joining pseudotwofold related molecules with the same chirality at C^{α}. Geometric parameters for all hydrogen bonds are given in Table 4.

4. Statistical analysis of racemates in noncentrosymmetric space groups

Unfortunately, there is no efficient way of searching the Cambridge Structural Database for all racemic compounds. The only search field containing information about the (possible) stereochemistry of the registered compounds is the NAME field.

An initial search of CSD using various combinations of the stereochemical designators $D, L, R, S,+$ and - as well as the strings 'racemate', 'racemic' and 'rac' returned 1926 structures of racemic compounds, less than 2.5% of the organic crystal structures in the CSD. As this number seemed unreasonably low, a new strategy was employed.

The 77986 unique organic structures in the CSD were separated into centrosymmetric (50291 hits, 64.5%) and noncentrosymmetric (27695 hits, 35.5%) space groups using appropriate bit screens in the CSD search program QUEST (Allen \& Kennard, 1993). 6000 selected centrosymmetric structures (3 series, each with 2000 structures, from different parts of the database) yielded 5560 unique structures (93%). They were all manually inspected for chiral atoms with rejection of achiral as well as meso structures. In this way a total of 1263 racemates were identified. Assuming that both the racemates and the centrosymmetric organic structures in general are evenly distributed over the entire database, the estimated relative number of centrosymmetric organic racemates is around 23%, that is, approximately 11500 structures. The majority (98.0\%) of the 1263 retrieved racemates belong to the four space groups $P \overline{1}$ (26.6\%), $P 2_{1} / c$ (57.1\%), C2/c (7.6\%) and Pbac (6.7\%), Table 5. C2/c (7.6\%) and Pbac (6.7\%), Table 5. For these space groups, there is no obvious

Table 3
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

$\mathrm{O} 1 A-\mathrm{C} 1 A$	$1.2505(9)$	$\mathrm{O} 1 B-\mathrm{C} 1 B$	$1.2503(10)$
$\mathrm{O} 2 A-\mathrm{C} 1 A$	$1.2619(10)$	$\mathrm{O} 2 B-\mathrm{C} 1 B$	$1.2618(10)$
$\mathrm{N} 1 A-\mathrm{C} 2 A$	$1.4862(10)$	$\mathrm{N} 1 B-\mathrm{C} 2 B$	$1.4864(10)$
$\mathrm{C} 1 A-\mathrm{C} 2 A$	$1.5345(10)$	$\mathrm{C} 1 B-\mathrm{C} 2 B$	$1.5330(10)$
$\mathrm{C} 2 A-\mathrm{C} 3 A$	$1.5349(11)$	$\mathrm{C} 2 B-\mathrm{C} 3 B$	$1.5364(11)$
$\mathrm{C} 3 A-\mathrm{C} 4 A$	$1.4946(12)$	$\mathrm{C} 3 B-\mathrm{C} 4 B$	$1.4938(13)$
$\mathrm{C} 4 A-\mathrm{C} 5 A$	$1.3244(17)$	$\mathrm{C} 4 B-\mathrm{C} 5 B$	$1.3220(17)$
$\mathrm{O} 1 A-\mathrm{C} 1 A-\mathrm{C} 2 A-\mathrm{N} 1 A$	$-26.27(9)$	$\mathrm{O} 1 B-\mathrm{C} 1 B-\mathrm{C} 2 B-\mathrm{N} 1 B$	$26.94(9)$
$\mathrm{O} 2 A-\mathrm{C} 1 A-\mathrm{C} 2 A-\mathrm{N} 1 A$	$157.17(7)$	$\mathrm{O} 2 B-\mathrm{C} 1 B-\mathrm{C} 2 B-\mathrm{N} 1 B$	$-156.59(7)$
$\mathrm{N} 1 A-\mathrm{C} 2 A-\mathrm{C} 3 A-\mathrm{C} 4 A$	$-60.95(10)$	$\mathrm{N} 1 B-\mathrm{C} 2 B-\mathrm{C} 3 B-\mathrm{C} 4 B$	$63.23(10)$
$\mathrm{C} 2 A-\mathrm{C} 3 A-\mathrm{C} 4 A-\mathrm{C} 5 A$	$120.91(12)$	$\mathrm{C} 2 B-\mathrm{C} 3 B-\mathrm{C} 4 B-\mathrm{C} 5 B$	$-120.03(12)$

unit for the five space groups is approximately the same for both racemic crystals and organic crystals in general, Table 6.

No attempts have been made to estimate the number of organic racemates in the 23874 unique structures in chiral space groups. In order for a racemate to crystallize in such a space group, the crystal must contain (at least) two crystallographically independent molecules of opposite chirality. Despite this restriction on possible structures, a search for racemates in these space groups would require a detailed inspection of all chiral centers in all structures with two or more molecules in the asymmetric unit. However, we believe this number to be low. A racemate in a chiral space group is rather extraordinary and this should indeed be reflected in the title of the CSD entry. The initial search for stereochemical designators in the NAME field, as discussed above, gave 139 hits for racemates belonging to a chiral space group. A thorough investigation of the 139 structures, using both molecular graphics (Sybyl6.4; Tripos Inc., 1997) and checking the original publication, revealed that only 17 (12.2%) were in fact racemates and had (at least) two independent enantiomers, Table 7. Out of the

Figure 3
R.m.s deviations in atomic coordinates between pairs of crystallographically independent molecules in 114 non-centrosymmetric racemates.

Table 6
Racemates in non-centrosymmetric space groups which do have symmetry operations of the second kind.
$Z_{\text {eff }}=$ reported Z value, $Z_{0}=$ standard Z value given in International Tables for Crystallography (1996, Vol. A).

	Racemates	Racemates with $Z_{\text {eff }}>Z_{0}$	Overall in CSD with $Z_{\text {eff }}>Z_{0}$
Space group	39	$13(33.3 \%)$	28.5%
$P c$	136	$14(10.3 \%)$	15.0%
$C c$	147	$45(30.6 \%)$	27.9%
$P c a 2_{1}$	233	$34(14.6 \%)$	12.8%
$P n a 2_{1}$	35	$1(2.9 \%)$	$<0.5 \%$
$F d d 2$	$32 \dagger$	$3(6.8 \%)$	-
Others			

$\dagger P n c 2$ (1), Pba2 (1), Pnn2 (2), Aba2 (4), Iba2 (14), P $\overline{4}$ (1), $I \overline{4}$ (8), $I 4_{1} c d$ (2), $P \overline{4} 2{ }_{1} c$ (8) and $R 3 c$ (1).
remaining 122 structures a wrong name had been assigned for 117, either in the CSD or in the original publication. Most errors occur as the name for a racemic product has been kept even though the enantiomers are spontaneously resolved upon crystallization. The space group is incorrect for five structures either as a result of erroneous CSD deposition (refcodes: FIBKIK, FIBKOQ, JAVKUM) or wrong assignment in the original paper (refcodes: SARSUG, SOXVOR). The latter racemates are probably correctly described in the centrosymmetric space group $P \overline{1}$, as pointed out by Marsh (1995). A complete list with refcode and error category for the 122 structures is available from the correspondence author upon request. ${ }^{1}$

A previous analysis of the extent of conformational similarity between crystallographically independent molecules in 399 crystal structures from 65 chiral space groups gave an average r.m.s. deviation of $0.326 \AA$ (Sona \& Gautham, 1992). They also observed, as did Padmaja et al. (1990), that the higher the symmetry of the space group, the lower the number of structures with more than one molecule in the asymmetric unit. From our data it looks as if this is not the case for racemates in non-centrosymmetric space groups: there is only one triclinic structure, 38 monoclinic, 85 orthorhombic, one tetragonal and finally two trigonal crystals (Tables 6 and 7).

[^1]Table 7
Racemates in space groups which do not have symmetry operations of the second kind.

Space group	Racemates
$P 1$	1
$P 2_{1}$	11
$P 2_{1} 2_{1} 2_{1}$	4
$P 3_{1} 21$	1

A least-squares superposition of the independent molecules in the various racemates in non-centrosymmetric space groups (Tables 6 and 7, and inclusive of DL-allylglycine) gives an average r.m.s. deviation of $0.190 \AA$ (non-H atoms only) after inversion of one of the two molecules. Compared with the mean r.m.s. of $0.326 \AA$, as obtained by Sona \& Gautham (1992), we may infer that when there are two independent molecules in the asymmetric unit the conformational difference (after a possible inversion) is smaller for molecules with opposite chirality than for molecules with the same chirality or achiral molecules. Almost 80% of the structures have r.m.s. values in the range $0-0.2 \AA$, Fig. 3. The corresponding frequency is approximately 55% for molecules in chiral space groups (Sona \& Gautham, 1992).

The purchase of the Siemens SMART diffractometer was made possible through financial support from The Norwegian Council of Research (NFR).

References

Allen, F. H. \& Kennard, O. (1993). Chem. Des. Autom. News, 8, 1, 3137.

Dalhus, B. \& Görbitz, C. H. (1999). Acta Cryst. B55, 1547-1555.
Dalhus, B. \& Görbitz, C. H. (2000). In preparation.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Marsh, R. E. (1995). Acta Cryst. B51, 897-907.
Padmaja, N., Ramakumar, S. \& Viswamitra, M. A. (1990). Acta Cryst. A46, 725-730.
Sheldrick, G. M. (1994). SHELXTL. Version 5. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sona, V. \& Gautham, N. (1992). Acta Cryst. B48, 111-113.
Taylor, R. \& Kennard, O. (1983). Acta Cryst. B39, 133-138.
Tripos Inc. (1997). Sybyl6.4. Tripos Inc., St Louis, Missouri, USA.

[^0]: (C) 2000 International Union of Crystallography

[^1]: ${ }^{\mathbf{1}}$ Supplementary data for this paper, including lists of CSD refcodes and r.m.s. values for the various structures included in Tables 6 and 7, are available from the IUCr electronic archives (Reference: OS0044). Services for accessing these data are described at the back of the journal.

